linkedin facebook twitter rss

04 Jul Cognitive Multi-Processing

Layered Model

Today I’ll address parallel computing and models for breaking down computational problems. I will not address the question of autonomy today, but save the question of empowering independent agents for a future post. ANS and Multiprocessors Artificial Neural Systems (ANS) are probably the closest approximation of the mechanical brain paradigm, so it is useful to know how […]

07 Dec Curating Digital Meaning

content-without-process

I think of museums when I hear about curating. Meaning is, in a strange way, an artifact, simultaneously ancient and modern. Meaning has existed as long as perception has existed in the most rudimentary forms of life. For the purposes of my blog, I define meaning as: “the fruit of understanding and the fuel of […]

23 Dec Visual Knowledge Dimensions

Statistical Analysis

Visualizing knowledge in graphs and charts empowers decision makers by giving them actionable knowledge in understandable format. To make this most effective, the labels on the graph must provide clearly defined context cues that make it easy to interpret. Converging data strategies using Big Data (Hadoop, NoSQL, Cassandra, MapReduce…) can change the way we access content […]

17 Dec Visualizing Knowledge

Visualizations on multiple devices

Visualizing Knowledge – Automatic Generation Words are so symbolic that even symbolic thinkers, like me, understand more when there’s a picture to go along with the words. is partly explains my crazy use of images in this blog. The various forms of graphical representations are superb inventions that enable us to view and understand mathematical data […]

10 Dec Measuring Knowledge

Measuring Knowledge

Sometimes you need to know about your knowledge. When you’re in the middle of trying to build a system that knows stuff, you may ask, how much does the system know after this training or learning cycle as a percent of the total knowable amount? When we test students in their learning cycles, we use a […]

21 Oct Fuzzy Interconnectedness

Phone Brain

Fuzzy and Interconnected Techniques Section 5 suggests that the software of cognition is very fuzzy and able to operate efficiently even without having complete or totally accurate information. We said that we want to replicate that flexibility. We spoke in Section 7 about different fuzzy approaches for representing and processing information. These approaches include artificial […]

17 Oct Neural Conceptual Dependency

Representing Conceptual Graphs

Conceptual Dependency Much of this blog has been about knowledge representation: how the brain might learn and process it, how cognitive functions treat knowledge, and now, how computers may store and process it. Conceptual structures and conceptual dependency theories for computation have been useful for categorizing and representing knowledge in intuitively simple and cognitively consistent […]

08 Sep Gnostic Learning Model

Hard Disk in Brain

In prior posts in this section, and periodically in other sections of my blog, I have been exploring how humans learn, and how we might replicate those processes in computer software or (less likely) hardware. The context of the learning, or knowledge acquisition, upon which I choose to focus is language learning. While knowledge acquisition is much broader, this is an […]

25 Aug Determinacy in Neural Connections

Neural Net

For many years, researchers thought that it was wrong to assume that there was a cell or set of cells in the brain that stored the memory of Grandma’s face. Though the comparison with computer memory was appealing, it was thought to be too simplistic and incorrect. Now, more researchers in different academic disciplines are assuming […]

18 Aug Modeling Positive and Negative Activation

Blue Neurons

Humans learn from both positive and negative experiences. The electrical flow between neurons can be positive (excitatory), propagating electrical potential flow along neural path to create further excitation and a bubbling-up effect, or negative (inhibitory) reducing or stopping the electrical potential flow along a pathway. Remember that a neural pathway is not like a long line, but like […]